Shijia Yang

shijiay@stanford.edu • (626) 861-1312 • Menlo Park, California

EDUCATION

Stanford University

Master of Science in Computer Science with GPA: 3.9/4.0

University of California, Berkeley

- Bachelor of Art in Computer Science with GPA: 3.9/4.0
- **Relevant Coursework:**
 - Applied Theory 3D Vision (Graduate), Machine Learning, DNN, Computer Graphics 0
 - Theory Optimization, Linear Algebra, Probability, Discrete Mathematics, Multivariate Calculus \cap

RESEARCH EXPERIENCE

Stanford Vision and Learning Lab

Graduate Researcher, advised by Prof. Jiajun Wu

Researched on utilizing large language model's spatial knowledge for robotic vision

Mechanical Systems Control Lab

Undergraduate Researcher, advised by Prof. Masayoshi Tomizuka

Researched on multimodal multitask learning for autonomous vehicles

Berkeley Artificial Intelligence Lab

Undergraduate Researcher, advised by Prof. Kurt Keutzer & Prof. Joseph E. Gonzalez

Researched on data and training efficiency for 3D vision and language-vision models

PUBLICATIONS

[1] Law of Vision Representation in MLLMs

Shijia Yang, Bohan Zhai, Quanzeng You, Jianbo Yuan, Hongxia Yang, Chenfeng Xu Arxiv.

Revealed a strong correlation between the combination of cross-modal alignment, correspondence in vision representation, and MLLM performance, reducing the cost of testing new vision representations by 99.7%

[2] HallE-Control: Controlling Hallucinations in Large Vision Language Models

Shijia Yang*, Bohan Zhai*, Chenfeng Xu, Sheng Shen, Kurt Keutzer, Chunyuan Li, Manling Li Arxiv.

• Proposed a GPT-4 assisted evaluation for detailed captioning, CCEval, and a method that reduces hallucination in LVLMs by 44% compared to LLaVA7B

May 2023 - Present

September 2019 - May 2023

March 2021 - May 2023 Berkeley, CA

Stanford, CA

March 2021 - May 2023 Berkeley, CA

April 2023 - December 2023

[3] Multitask Vision-Language Prompt Tuning

Shijia Yang*, Sheng Shen*, Tianjun Zhang*, Bohan Zhai, Joseph E. Gonzalez, Kurt Keutzer, Trevor Darrell Winter Conference on Applications of Computer Vision (WACV) 2023

Proposed the multitask vision-language prompt tuning (MVLPT) framework, including multitask prompt initialization and multitask prompt adaptation, which sets the state-of-the-art on 20-shot ELEVATER benchmark

[4] Time Will Tell: New Outlooks and a Baseline for Temporal Multi-View 3D Object Detection

Jinhyung Park*, Chenfeng Xu*, Shijia Yang, Kurt Keutzer, Kris Kitani, Masayoshi Tomizuka, Wei Zhan International Conference on Learning Representations (ICLR) 2023 Top-5%

- Proposed SOLOFusion for temporal camera-only 3D detection using a long history of image observations • with long-term but coarse resolution, then augment with short-term, fine-grained resolution
- SOLOFusion sets new state of-the-art on nuScenes

[5] Image2Point: 3D Point-Cloud Understanding with 2D Image Pretrained Models

Shijia Yang*, Chenfeng Xu*, Tomer Galanti, Bichen Wu, Xiangyu Yue, Bohan Zhai, Wei Zhan, Peter Vajda, Kurt Keutzer, Masayoshi Tomizuka European Conference on Computer Vision (ECCV) 2022

- Proposed a simple pretraining scheme of using 2D model weights for 3D point-cloud understanding
- Explained feasibility of image-point-cloud transfer from the aspect of Neural Collapse

INDUSTRY EXPERIENCE

Microsoft - DeepSpeed Team

Research Scientist Intern

Worked on kv cache pruning for efficient inference on long text generation of LLMs, such as Llama2, MPT, and OPT

TikTok - Large Language Models Team

Research Scientist Intern

Worked on improving vision representation of MLLMs

PERSONAL PROJECTS

Multi-modal Multi-task Learning for 3D Perceptive via Closed-loop Representation advised by Prof. Yi Ma

- Proposed a paradigm, inspired by closed-loop feedback from control theory, for a multi-modal multi-task 3D model •
- Performed five common tasks for point-cloud perception, including foreground detection and object detection
- Achieved at least 4% mAP improvement for object detection on Argoverse dataset compared with UNet3D baseline •

Snow Simulation advised by Prof. Ren Ng

- Used Taichi language designed for physical simulation and implemented the moving-least-square algorithm . (MPM) to simulate realistic snow particles in 2D and 3D
- Studied snow particles' update rule for positions, affine velocity field, deformation gradient, etc. •
- Implemented snowballs, frictional surface, and rigid body by adjusting particle distribution and parameters •

Data Free Bert Quantization *advised by Prof. Sergey Levine*

- Alleviating the problem that quantized models may not have original data to perform post-quantization finetuning
- Proposed token generation algorithm to generate pseudo data for low precision Bert model quantization
- Improved accuracy of quantized Bert by 12.2%-61.7% on GLUE tasks compared to quantized Bert baseline

Bellevue, Washington

January 2023 - August 2023

February 2024 - June 2024 San Jose, California